Abstract
5α-Cardenolides isolated from Kanahia laniflora are inhibitors of muscle-type nicotinic acetylcholine receptors expressed in TE671
cells with IC50 values in the range of 27 - 60 μM, as determined by whole-cell patch-clamp electrophysiological
experiments.
References
- 1 Beentje H. Kenya trees, shrubs and lianas. Nairobi; National Museums of Kenya 1994:
p 494
- 2
Haerdi F.
Die Eingebornen-Heilpflanzen des Ulanga-Distriktes Tanganjikas (Ostafrika).
Acta Trop Supp.
1964;
8
135
- 3 Neuwinger H D. African traditional medicine, a dictionary of plant use and applications. Stuttgart;
Medpharm Scientific Publishers 2000: p 287
- 4
Kruger A MC, Gerritsma-Van der Vijver L M.
Die chemiese en biologiese evaluering van Kanahia laniflora (Asclepiadaceae).
S A Tydskr Nat Tegnol.
1986;
5
46-52
- 5
Clarkson C, Stærk D, Hansen S H, Jaroszewski J W.
Hyphenation of solid-phase extraction with liquid chromatography and nuclear magnetic
resonance: application of HPLC-DAD-SPE-NMR to identification of constituents of Kanahia laniflora
.
Anal Chem.
2005;
77
3547-53
- 6 Cheung H TA, Chiu F CK, Watson T R, Wells R J. Cardenolide glycosides of the Asclepiadaceae.
New glycosides from Asclepias fruticosa and the stereochemistry of uscharin, voruscharin and calotoxin. J Chem Soc Perkin
Trans 1 1983: 2827-35
- 7 Cheung H TA, Nelson C J. Cardenolide glycosides with 5,6-unsaturation from Asclepias vestita
. J Chem Soc Perkin Trans 1 1989: 1563-70
- 8
Somberg J C, Mudge G H, Risler T, Smith T W.
Neurally mediated augmentation or arrhythmogenic properties of highly polar cardiac
glycosides.
Am J Physiol.
1980;
238
202-8
- 9
Siddiqui B S, Sultana R, Begum S, Zia A, Suria A.
Cardenolides from the methanolic extract of Nerium oleander leaves possessing central nervous system depressant activity in mice.
J Nat Prod.
1997;
60
540-4
- 10
Begum S, Siddiqui B S, Sultana R, Zia A, Suria A.
Bio-active cardenolides from the leaves of Nerium oleander
.
Phytochemistry.
1999;
50
435-8
- 11
Krivoi I I, Drabkina T M, Dobretsov M G, Vasiliev A N, Kravtsova V V, Eaton M J.
et al .
Functional interaction between nicotinic cholinergic receptors and Na, K-ATPase in
the skeletal muscles.
Ross Fiziol Zh Im I M Sechenova.
2004;
90
59-72
- 12
Shoepfer R, Luther M, Lindstrom J.
The human medulloblastoma cell line TE671 expresses a muscle like acetylcholine receptor
- cloning of the α-subunit c-DNA.
FEBS Lett.
1988;
226
235-40
- 13
Luther M A, Schoepfer R, Whiting P, Casey B, Blatt Y, Montal M S. et al .
A muscle acetylcholine receptor is expressed in the human cerebellar medulloblastoma
cell line TE761.
J Neurosci.
1989;
9
1082-96
- 14
Hogg R C, Raggenbass M, Bertrand D.
Nicotinic acetylcholine receptors: from structure to brain function.
Rev Physiol Biochem Pharmacol.
2003;
147
1-46
- 15
Mellor I R, Usherwood P N.
Targeting inotropic receptors with polyamine-containing toxins.
Toxicon.
2004;
43
493-508
- 16
Brier T J, Mellor I R, Tikhonov D B, Neagoe I, Shao Z, Brierley M J. et al .
Contrasting actions of philanthotoxin-343 and philanthotoxin-(12) on human muscle
nicotinic acetylcholine receptors.
Mol Pharmacol.
2003;
64
954-64
- 17
Pereira E FR, Hilmas C, Santos M D, Alkodon M, Maelicke A, Albuquerque E X.
Unconventional ligands and modulators of nicotinic receptors.
J Neurobiol.
2002;
53
479-500
- 18
Curtis L, Buisson B, Bertrand S, Bertrand D.
Potentiation of human α4β2 neuronal nicotinic acetylcholine receptor by estradiol.
Mol Pharmacol.
2002;
61
127-35
- 19
Shao Z, Mellor I R, Brierley M J, Harris J, Usherwood P NR.
Potentiation and inhibition of nicotinic acetylcholine receptors by spermine in the
TE671 human muscle cell line.
J Pharmacol Exp Ther.
1998;
286
1269-76
- 20
Blanton M P, Xie Y, Dangott L J, Cohen J B.
The steroid promegestone is a noncompetitive antagonist of the Torpedo nicotinic acetylcholine receptor that interacts with the lipid-protein interface.
Mol Pharmacol.
1999;
55
269-78
- 21
Uki M, Nabekura J, Akaike N.
Suppression of the nicotinic acetylcholine response in rat superior cervical ganglionic
neurons by steroids.
J Neurochem.
1999;
72
808-14
- 22
Paradiso K, Sabey K, Evers A S, Zorumski C F, Covey D G, Steinbach J H.
Steroid inhibition of rat neuronal nicotinic α4β2 receptors expressed in HEK293 cells.
Mol Pharmacol.
2000;
58
341-51
- 23
Kindler C H, Verotta D, Gray A T, Gropper M A, Yost C S.
Additive inhibition of nicotinic acetylcholine receptors by corticosteroids and the
neuromuscular blocking drug vecuronium.
Anesthesiology.
200;
92
821-32
- 24
Shi L, He Y, Liu L, Wang C.
Rapid nongenomic effect of corticosterone on neuronal nicotinic acetylcholine receptor
in PC12 cells.
Arch Biochem Biophys.
2001;
394
145-50
- 25
Takashima K, Kawasaki S, Kimura S, Fujita R, Sasaki K.
Blockade of ionotropic receptor responses by progesterone in the ganglion cells of
Aplysia
.
Neurosci Res.
2002;
43
119-25
- 26
De Almeida R F, Loura L M, Prieto M, Watts A, Fedorov A, Barrantes F J.
Cholesterol modulates the organization of the γM4 transmembrane domain of the muscle
nicotinic acetylcholine receptor.
Biophys J.
2004;
86
2261-72
- 27
Hamouda A K, Chiara D C, Sauls D, Cohen J B, Blanton M P.
Cholesterol interacts with transmembrane α-helices M1, M3, and M4 of the Torpedo nicotinic acetylcholine receptor: photolabeling studies using [3H]azicholesterol.
Biochemistry.
2006;
45
976-86
- 28
Komissarenko N F, Chernobai V T, Komissarenko A N.
New cardenolides from Gomphocarpus fruticosus leaves.
Chem Nat Compd (Engl Transl).
1997;
33
55-6
- 29
Strømgaard K, Brierley M J, Andersen K, Sløk F A, Mellor I R, Usherwood P N. et al
.
Analogues of neuroactive polyamine wasp toxins that lack inner basic sites exhibit
enhanced antagonism toward a muscle-type mammalian nicotinic acetylcholine receptor.
J Med Chem.
1999;
42
5224-34
Prof. Jerzy W. Jaroszewski
Department of Medicinal Chemistry
The Danish University of Pharmaceutical Sciences
Universitetsparken 2
2100 Copenhagen
Denmark
Fax: +45-3530-6040
Email: jj@dfuni.dk